
1.264 Lecture 10

SQL, part 3

Connecting to database servers

Data definition language (DDL)

•	 We’ve explored the data manipulation language
(DML) so far.

•	 SQL also has a data definition language (DDL):

–	 CREATE DATABASE
–	 CREATE TABLE
–	 CREATE INDEX (and other CREATE statements)

–	 ALTER TABLE
–	 ALTER VIEW (and other ALTER statements)

–	 DROP DATABASE
–	 DROP TABLE
–	 DROP VIEW (and other DROP statements)

–

–

–

–

–

–

–

Indexes

•	 Index is a separate data object in the database that lists the
table rows in order to allow rapid lookup.

Each index for each table is a separate object
Primary keys and foreign keys are automatically indexed

•	 Rapid access to indexed columns
Each index may be updated when a row is updated, so
indexes slow updates, insertions and deletes
Practical maximum of 3 or 4 indexes per table. If others are
needed on occasion, add and drop them as needed
If a database is mostly read, use many indexes to speed
performance
If database is mostly updates, use as few indexes as possible

•	 Clustered indexes
Physically rearrange rows by a single index to maximize disk
access speed

–

–

•

•

•

•

–

•

•

–

–

Example of indexes

•	 Customer database
Customer ID is primary key
We also want to search by:

Customer name (last, first)

City, state

Postal (zip) code

Address

Index the name, city/state, zip and address
Four indexes: slow insert, update, delete, but fast lookup
If customer database is fairly stable, this is fine

Similar logic for parts catalog, bill of materials, etc.

•	 Internet search engines use ‘text retrieval engines’
Index every word in the entire database; count occurrences and
rank matches. Recent advances (frequency of links, usage…)
enhance this.

• Syntax:
– CREATE INDEX IX_Orders ON Orders (Cust, OrderNbr)
–	 Try this in MSE. First select MIT1264 in toolbar or enter:

Use MIT1264
Go

–

•

–

•

•

–

•

•

–

•

•

–

•

•

Security

•	 Security options
Use operating system logon/password (weak) to identify user

User gets access to all databases, all tables (“Windows authentication”)

Use database logon/password (stronger)
Restrict access to databases, tables, but can still use all applications
“SQL Server authentication”: we’ll use this for the Web>db connection

Application level security (stronger still, but tough to administer)
Each application must look in its database to see if user authorized
Can set authorization based on data model (which entities)

Network level security (strongest)
Use directory and public key infrastructure (PKI) (encryption)
Single signon (Kerberos, Microsoft Active Directory)

• Classes of users: superuser (dba or sa), data owner, data user

•	 Assignment of database privileges (permissions)

GRANT and REVOKE: E.g.,
• GRANT ALL ON TableName TO PUBLIC WITH GRANT OPTION
• REVOKE ALL ON TableName FROM PUBLIC CASCADE

Order matters for GRANTs and REVOKEs. Last one governs.

Try these two statements; look at the table properties in Enterprise Mgr

•

•

–

–

–

•

•

•

•

•

•

Transactions

•	 Group of operations often must be treated as
atomic unit
–	 Start transaction

Insert OrderHeader

While more OrderDetail (line items) exist:

Select Part

Update Part inventory

Insert OrderDetail row

–	 Commit transaction if everything succeeds

–	 Roll back transaction if any error occurs:

In Order Header

In OrderDetail

Server crashes

Disk crashes

Network dies

Etc.

–

–

–

–

Transaction properties (ACID)

•	 Atomicity. Either all of transactions are executed or all are

rolled back

Account transfer debit and credit both succeed or fail

•	 Consistency. Only legal states can exist
If order detail cannot be written, order header is rolled back

•	 Isolation. Results not seen by other transactions until the
transaction is complete

Account transfer debit and credit either both seen or neither is
seen

•	 Durability. Data is persistent even if hardware or software

crashes: What is written on the disk is correct

Account balance is maintained

–

•

•

•

•

–

•

•

•

Transactions

•	 Multiuser databases have other transaction issues
•	 Two database actions conflict if one or both are write

operations. Examples of problems:
Lost updates:

7 parts in inventory
Transactions 1 and 2 simultaneously read 7 as the current quantity
Transaction 1 finishes first, adds 3 parts, writes 10 as quantity
Transaction 2 finishes second, subtracts 5 parts, writes 2 as quantity!

Uncommitted changes:
Transaction 1 adds 3 parts, writes 10 as quantity
Transaction 2 reads 10 as quantity
Transaction 1 aborts (rolls back), leaving transaction 2 with wrong
data

•

–

–

•

–

–

•

–

–

•

–

–

–

Transactions

Databases use locks for concurrency. One simple scheme is
pessimistic locking:

Writes obtain an exclusive lock on a record, preventing reads or writes
Reads obtain nonexclusive locks, allowing other reads but preventing a
writer from obtaining an exclusive lock

Or you can use optimistic locking (logs)
No locks are used. Check if row exists, is same after operation
If not, issue error and program must retry. Better performance.

Databases use logs for recovery.
Log file of all changes is written in addition to making the changes in the
database. (This is a key bottleneck in architecture.)
Change cannot be committed until the log is written to stable storage.

Changes usually committed before tables actually updated on disk

If a change is rolled back, the log is read to reverse the transactions.
If a system or disk crashes, the log is rerun from the last checkpoint to
restore the database.
Turn off logs when loading batch data or recovering

=

=

=

Transaction example

INSERT Customers VALUES (212, 'Smith Co', 89, 20000) Independent INSERTs

INSERT Orders VALUES (212, 'Lathe', 3, 20000, 0.1)

INSERT Orders VALUES (212, 'Latte', 10, 2, 0.0)

 INSERTs as a transaction

BEGIN TRAN

INSERT Customers VALUES (213, 'Wang Co', 53, 100000)

IF @@ERROR 0

BEGIN

INSERT Orders VALUES (213, 'Mill', 1, 50000, 0.2)

IF @@ERROR 0

BEGIN

INSERT Orders VALUES (213, 'Malt', 1, 2, 0.0)

IF @@ERROR 0

COMMIT TRAN Exercise: Modify the transaction:
ELSE It’s in Lecture10.sql on the Web site
ROLLBACK TRAN INSERT Customer 214

END
INSERT first order for 214 correctly

ELSE
INSERT 2nd order incorrectly: leave out

ROLLBACK TRAN
the last two fields

END
Then open Customers and Orders:

ELSE
Are any of the INSERTs present? ROLLBACK TRAN

–

–

–

–

–

Performance

•	 Benchmarks (TPCApp through H…)
www.tpc.org

•	 Caches: disks are slow!
Place pages into memory and beyond for fast access
Disk configuration
More on this when we do hardware

• Query optimizers
Many ways to do joins; depends on table size, characteristics of
keys (length, ‘uniqueness’), etc.

• Set and tune indexes, use cluster indexes
• Denormalize only for readonly access

•

–

–

•

–

–

•

–

•

–

–

–

ApplicationtoDatabase Connectivity

Initial stage: Embedded SQL (ESQL) in each database server (early
1990s)

Compiled into server application, cannot be changed by end user
Could not work reasonably across multiple databases

Second stage: As clientserver applications appeared (late 1990s)
Each database vendor provided an application programming
interface(API) to allow client programs to query the database
Each vendor’s API was different, of course

Current stage: ODBC, JDBC, ADO.NET, … (late 1990snow)
ODBC was first common Windows API capable of accessing most major
databases

Oracle, SQL Server, Sybase, DB2, Informix

JDBC is very similar for Java environment
.NET, J2EE extend database capabilities much further still
Web services, WSDL, UDDI go even farther—later in term

http:ADO.NET

•

•

•

•

•

•

•

ODBC API (and the rest too)

Library of procedures (methods) to connect from an application

(Web, Windows, other) to DBMS, execute SQL statements and

retrieve results
SQL syntax based on SQL92 standard
Standard set of error codes
Standard way to connect and log on to DBMS
Standard representation of data types
Standard methods for data type conversions
ODBC has core, layer 1 and layer 2 functionality to deal with
simple and sophisticated interfaces. Others are similar.

These features overcome many nonstandard SQL issues noted in the
last lecture.

ODBC Architecture (and others)

