
1.264 Lecture 9

SQL: Joins, subqueries, views

Joins

•	 Relational model permits you to bring data from separate
tables into new and unanticipated relationships.

• Relationships become explicit when data is manipulated:

when you query the database, not when you create it.

–	 This is critical; it allows extensibility in databases. The EPA

never thought its data would be used in 1.264 along with DOT
carrier data, and some new order tables.

–	 You can join on any columns in tables, as long as data types
match and the operation makes sense. They don’t need to be
keys, though they usually are.

•	 Good joins
–	 Join column is usually key column:

•	 Either primary key or foreign key

–	 Join columns must have compatible data types
–	 Nulls will never join

Joins

•	 List all orders, showing order number and amount, and name

and credit limit of customer
–	 Orders has order number and amount, but no customer names or

credit limits
–	 Customers has customer names and credit limit, but no order info

•	 SELECT OrderNbr, Amt, Company, CreditLimit FROM
Customers, Orders WHERE Cust = CustNbr; (Implicit syntax)

•	 SELECT OrderNbr, Amt, Company, CreditLimit FROM Customers
INNER JOIN Orders ON Customers.CustNbr = Orders.Cust;

Join

(SQL92)

CustNbr Company CustRep CreditLimit

211 Connor Co 89 $50,000.00

522 Amaratunga Enterprises 89 $40,000.00

890 Feni Fabricators 53 $1,000,000.00

OrderNbr Cust Prod Qty Amt Disc

1 211 Bulldozer 7 $31,000.00 0.2

2 522 Riveter 2 $4,000.00 0.3
3 522 Crane 1 $500,000.00 0.4

Join with 3 tables

•	 List orders over $25,000, including the name of the salesperson

who took the order and the name of the customer who placed it.
–	 SELECT OrderNbr, Amt, Company, Name FROM Orders, Customers,

SalesReps WHERE Cust = CustNbr AND CustRep = RepNbr AND Amt
>= 25000; (Implicit syntax)

OrderNbr Cust Prod Qty Amt Disc

1 211 Bulldozer 7 $31,000.00 0.2

2 522 Riveter 2 $4,000.00 0.3

3 522 Crane 1 $500,000.00 0.4

CustNbr Company CustRep CreditLimit

211 Connor Co 89 $50,000.00

522 Amaratunga Enterprises 89 $40,000.00

890 Feni Fabricators 53 $1,000,000.00

RepNbr Name RepOffice Quota Sales

53 Bill Smith 1 $100,000.00 $0.00

89 Jen Jones 2 $50,000.00 $130,000.00

OrderNbr Amt Company Name

Result: 1 $31,000.00 Connor Co Jen Jones

3 $500,000.00 AmaratungaEnterprise Jen Jones

Join notes

•	 SQL92 syntax for previous example:

–	 SELECT OrderNbr, Amt, Company, Name FROM SalesReps
INNER JOIN Customers ON SalesReps.RepNbr =

Customers.CustRep

INNER JOIN Orders ON Customers.CustNbr = Orders.Cust

WHERE Amt >= 25000;

•	 Use * carefully in joins
–	 It gives all columns from all tables being joined

•	 If a field has the same name in the tables being
joined, qualify the field name:
–	 Use table1.fieldname, table2.fieldname
–	 Customers.CustNbr, Orders.Amt, etc.

Self joins

EmpNbr Name Title Mgr

105 Mary Smith Analyst 104

109 Jill Jones Sr Analyst 107

104 Sally Silver Manager 111

107 Pat Brown Manager 111

111 Eileen Howe President

•	 We want to list the analysts and their managers
– Manager could be foreign key into manager table, but it has to

be a ‘foreign’ key into the employee table itself in this case

•	 Attempt 1:
– SELECT Name, Name FROM Employee, Employee WHERE

Mgr = EmpNbr; (Implicit syntax)

– Fails because it references Employee table twice
–	 Removing 2nd reference also fails; query looks for rows
where person is her own manager, which is not what we want.

Self joins

EmpNbr Name Title Mgr

105 Mary Smith Analyst 104

109 Jill Jones Sr Analyst 107

104 Sally Silver Manager 111

107 Pat Brown Manager 111

111 Eileen Howe President

•	 Attempt 2: Pretend there are 2 copies of Employee table, once
named Emp, the other named Mgr:
–	 SELECT Emp.Name, Mgr.Name FROM Emp, Mgr WHERE Emp.Mgr =

Mgr.EmpNbr; (Implicit syntax)

•	 SQL essentially lets us do this by giving aliases. Valid:
–	 SELECT Emp.Name, Mgr.Name FROM Employee Emp, Employee Mgr

WHERE Emp.Mgr = Mgr.EmpNbr (Implicit syntax)
–	 SELECT Emp.Name, Mgr.Name FROM Employee AS Emp INNER JOIN

Employee AS Mgr ON Emp.Mgr = Mgr.EmpNbr (SQL92)
–	 We actually only need to use 1 alias (Mgr)

JOIN types

•	 INNER join: returns just rows with matching keys
(join column values)

•	 RIGHT join: returns all rows from right (second)
table, whether they match a row in the first table
or not

•	 LEFT join: returns all rows from left (first) table,
whether they match a row in the first table or not

•	 OUTER join: Returns all rows from both tables,
whether they match or not

•	 (We’ll do an exercise on these)

Exercises

•	 List customer names whose credit limit is
greater than their sales rep’s quota. Also
list the credit limit and quota.

•	 List each rep’s name and phone number

Exercises

•	 List customer names whose credit limit is greater
than their sales rep’s quota. Also list the credit
limit and quota.
–	 SELECT CreditLimit, Quota, Company FROM SalesReps
INNER JOIN Customers ON SalesReps.RepNbr =
Customers.CustRep WHERE CreditLimit>Quota;

•	 List each rep’s name and phone number
–	 SELECT Name, Phone FROM Offices INNER JOIN
SalesReps ON Offices.OfficeNbr = SalesReps.RepOffice;

Subqueries

•	 SQL subqueries let you use the results of
one query as part of another query.
Subqueries
–	Are often natural ways of writing a statement
– Let you break a query into pieces and

assemble it

– Allow some queries that otherwise can’t be
constructed

Subqueries

•	 List the offices where the sales quota [target] for
the office exceeds the sum of individual
salespersons’ quotas
–	 SELECT City FROM Offices WHERE Target > ???
–	 ??? is “the sum of the quotas of the salespeople”, or

•	 SELECT SUM(Quota) FROM SalesReps WHERE RepOffice
= OfficeNbr

•	 We combine these to get
–	 SELECT City FROM Offices WHERE Target >

(SELECT SUM(Quota) FROM SalesReps WHERE RepOffice =
OfficeNbr);

Subqueries

•	 Subqueries always appear as part of the WHERE (or
HAVING) clause

•	 Subquery can only produce a single column of data
as its result
–	 Only one field can be in the subquery SELECT

•	 ORDER BY is not allowed; it would not make sense

•	 Usually refer to name of a main table column in the
subquery
– This defines the current row of the main table for which the

subquery is being run. This is called an outer reference.

–	 In our example, it’s RepOffice= OfficeNbr from Offices table

Views

•	 Virtual tables that present data in denormalized form to
users

•	 They are NOT separate copies of the data; they
reference the data in the underlying tables

•	 Database stores definition of view; the data is updated
when the underlying tables are updated

•	 Advantages:
–	 Designed to meet specific needs of specific users
–	 Much simpler queries for users on views constructed for them
–	 Security: give access only for data in views
–	 Independence: layers user or program away from change in
underlying tables

11 ABA

2

o

eps

QGC

Views

• CREATE VIEW CustomerOrders AS SELECT
CustNbr, Company, Name, OrderNbr, Prod, Qty, Amt
FROM Customers, SalesReps, Orders WHERE
CustRep = RepNbr AND CustNbr = Cust

(Implicit syntax)

Customers
CustNbr Company CustRep CreditLimit

211 QGG Co 89 $50,000
322 DBO C 89 $40,000

Orders
OrderNbr Cust Prod Qty Amt

88 2 C 7 $31,000
99 522 CDE $4,000

CustomerOrders
CustNbr Company Name OrderNbr Prod Qty Amt

211 Co Jen Smith 88 ABAC 7 $31,000
322 DBO Co Jen Smith 99 CDE 2 $4,000

SalesR
RepNbr Name RepOffice Quota Sales

53 Bill Smith 22 $100,000 $0
89 Jen Smith 44 $50,000 $130,000

View subtleties

•	 Possible to change views to invalidate them
–	 E.g. View of books under $5
–	 What happens if you update the price of a book to $5.99 through

the view. It disappears!
–	 Prevent this by adding: WITH CHECK OPTION

•	 Not all views can be updated. View is readonly if:
–	 DISTINCT is in the SELECT statement
–	 Expressions (averages, totals, etc.)
–	 References to views that are not updatable
–	 GROUP BY or HAVING clauses
–	 In bad databases: References to more than one table (defeats

purpose)

•	 You will use views in Dreamweaver
–	 It’s easier for a Web or XML page to have a single source of its

data

Exercises

•	 Display all customers with orders > $50,000 or
credit limits > $50,000.
–	 Hint: You need to use a RIGHT or LEFT JOIN since you
want all the customers, whether they have an order or
not, to be the ‘raw material’ for the WHERE clause

•	 Delete reps in sales offices in New York (NY) with
quotas over $40,000
–	 Hint: Remember you have to delete FROM a single table.
Use a subquery.

–	 Delete reps who are IN the result of the subquery

–	 When you have this right, it will not delete the reps due
to referential integrity, but you’ll know it’s working from
that message.

Exercises

•	 Display all customers with orders or credit limits > $50,000.

–	 SELECT DISTINCT CustNbr

FROM Customers LEFT JOIN Orders ON CustNbr = Cust
WHERE (CreditLimit > 50000 OR Amt > 50000)

•	 Delete reps in sales offices in New York (NY) with quotas
over $40,000
–	 DELETE FROM SalesReps

WHERE RepNbr IN

(SELECT RepNbr
FROM SalesReps, Offices
WHERE OfficeNbr = RepOffice AND

Quota>40000 AND State=‘NY’);
•	 (Syntax is correct, but won’t execute due to referential integrity in
our sample database)

