
Department of Electrical Engineering and Computer Science 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.830 Database Systems: Fall 2005 

Quiz I Solutions 

There are 15 questions and 12 pages in this quiz booklet. To receive credit for a question, answer 
it according to the instructions given. You can receive partial credit on questions. You have 80 
minutes to answer the questions. 

Write your name on this cover sheet AND at the bottom of each page of this booklet. 

Some questions may be harder than others. Attack them in the order that allows you to make 
the most progress. If you find a question ambiguous, be sure to write down any assumptions you 
make. Be neat. If we can’t understand your answer, we can’t give you credit! 

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ. 
NO PHONES, NO LAPTOPS, NO PDAS, ETC. 

Do not write in the boxes below 

14 (xx/24) 57 (xx/18) 89 (xx/9) 1012 (xx/21) 1315 (xx/28) Total (xx/100) 

Name: Solutions 



I 

6.830 Fall 2005, Quiz 1 Solutions	 Page 2 of 12


Short Answer Reading Questions 

The paper by Chou and DeWitt on buffer management strategies argues that a simple LRU buffer management 
policy is not the best choice in a database system. Suppose you have a buffer pool of 100 pages, and that each 
page can hold 10 tuples worth of data. Further, suppose the following operations are concurrently executing 
in your system: 

A.	 A sequential scan of a relation, R, consisting of 10,000 tuples. 

B.	 A nested loops join of a relation, S consisting of 1,000 tuples with a relation, T , consisting of 500 
tuples, with S as the outer relation. 

C.	 An index nested loops join of a relation U , consisting of 1,000 tuples, with a relation V , consisting 
of 10, 000 tuples, with V as the inner. Suppose there is a primary B+Tree index on V , and that the 
B+Tree has branching factor of 10 and fill factor of 0.5. Each lookup in V touches exactly one leaf 
(data) page. 

1. [6 points]: Estimate (to the nearest 100) the number of pages that an LRU buffer management policy 
would read from disk when processing these operations concurrently, assuming that each operation 
takes about the same amount of time to complete and begins at about the same time: 

(Show your work in the space below.) 
Since all of the operations take the same time to run, during each pass over the inner relation of 
operation B, operation A will scan 1/1000th of its tuples, or 1 page worth of data. Similarly, for each 
outer tuple processed in B, C will process one outer tuple as well; this will involve a single lookup in 
the BTree, which is 5 levels (so 5 pages will be accessed.) Depending on how you chose to interpret 
the “fill factor or .5” requirement, you might also have concluded that the BTree would be 6 levels. 

For simplicity, let’s assume that these operations run in an interleaved fashion such that one page is 
processed by A, then one outer tuple is processed by B, then one outer tuple is processed by C. 

Hence, the cost of each of the three operations is as follows: 

A.	 1,000 pages will be read 

B.	 100 pages of the outer will be read. Each pass of the inner will access 50 pages. The first pass 
will require us to reread all of the inner. On successive passes of the inner, A will have evicted one 
other page, and C will have evicted 5 other pages. But since B reaccesses each of its 50 pages 
on for every outer tuple processed by A and C, its pages won’t ever be evicted. Hence, only 150 
pages are read. 

C.	 100 pages of the outer will be read. Each will incur 5 lookups in the Btree for the inner. Clearly, 
the top page of the BTree will remain in the buffer pool. Each 2nd level page in the BTree will 
be reaccessed, on average, one out of every ten lookups. After ten lookups, A will have accessed 
ten pages, and B will have accessed one new page of inner tuples. Hence, with high probability, 
the top 2 levels of the BTree will remain in cache. Lower levels of the Btree are unlikely to be 
cached since they are reaccessed only 1 out of 100 outer tuples at most. The total cost is 100 + 1 
(top level) + 10 (2nd level) + 3 * 1000 = 3111 pages. 

Hence, the total number of pages read by the LRU approach is: 3111 + 150 + 1000 = 4261 pages. 

Name: 



6.830 Fall 2005, Quiz 1 Solutions	 Page 3 of 12


2. [6 points]: Estimate (to the nearest 100) the number of pages that the DBMIN buffer management 
policy (proposed in the Chou and DeWitt paper) would read from disk when processing these operations 
concurrently, assuming that each operation takes about the same amount of time to complete and begins 
at about the same time, and that buffer pool pages are optimally allocated to each operator. 

(Show your work in the space below.) 

DBMIN would allocate 1 page to A), 50 pages to B) and the remaining 49 pages to C). 

A.	 will access 1,000 pages. 

B.	 will access 150 pages, as above. 

C.	 will cache the top 2 levels of the tree in 11 pages. The remaining 38 pages will be managed with 
an MRU policy, which will result in 38% of the 100 third level pages being cached after the first 
lookup. All of the level 4 and 5 pages will need to be reread on each iteration. 

Hence, the total cost is:


1, 000 + 150 + 1 + 10 + 100 + 2.62 ∗ 1000 = 2731 pages.


Ben Bitdiddle is designing a database to store his grades in his classes at MIT. He chooses the following 
schema: 

grades 
{	 studentname : string //e.g., Ben


department : int //e.g., 6

number : int //e.g., 830

grade : char //e.g., A, B, C, D, F

professor : string //e.g., Madden

year : int //e.g., 2005

term : string //e.g., Fall


} primary key (studentname, department, number, year, term) 

3. [6 points]: List three specific examples of problems (anomalies) that might arise when inserting 
into, deleting from, or updating this database. 

A.	 Multiple students might take the same class on the same year/term, resulting in duplicated data 
and the possibility for insertion/update anomalies. 

B.	 If all students drop a class, no information about that class will be in the database. 

C.	 If the same class is offered on different years / terms, information about that class (e.g., its depart
ment and number) will be recorded multiple times, allowing insertion/update anomalies. 

Name:




6.830 Fall 2005, Quiz 1 Solutions	 Page 4 of 12


4. [6 points]: Propose a decomposition of Ben’s schema into two or more tables that avoids the 
problems you listed above. 

(Show your schema below.) 

grades 
{	 studentname : string 

catalog_id : int references catalog.catalog_id 
grade : char 

} primary key (studentname, catalog_id) 

course 
{	 course_id : int primary key 

department : int 
number : int 

} 

catalog 
{	 catalog_id : int primary key 

course_id : int references course.course_id 
prof_id : int references professors.prof_id 
year : int 
term : string 

} 

professors 
{ prof_id : int primary key 

professor : string 
} 

Name:




6.830 Fall 2005, Quiz 1 Solutions	 Page 5 of 12


Views 

5. [6 points]: Views are one of the most useful constructs in database systems. List two important 
uses for them: 

(Limit your answer to one sentence per use.) 

A.	 Views enable logical independence by allowing schema changes to be while still providing back
wards compatibility with existing applications written against the old schema. 

B.	 Views provide a security mechanism that allows users to only access the portions of the database 
they are authorized to read. 

6. [6 points]: Under what circumstances might you choose to materialize (i.e., precompute and store 
the contents) a view? 

(Limit your answer to one or two sentences.) 

Materialized views are a good idea when the costs of applying a view rewrite are high. Hence, if the 
view is complex and being accessed frequently, it is a good candidate for materialization. 

7. [6 points]: Should all views be materialized? If not, what is the downside (relative to regular, 
unmaterialized views) of creating a materialized view? 

(Limit your answer to one or two sentences.) 

No. It is a bad idea to materialize views on relations that are updated frequently, because materialized 
views must be recomputed after each update. 

Name:




6.830 Fall 2005, Quiz 1 Solutions Page 6 of 12


Recovery 

Ben Bitdiddle, after reading the ARIES paper, claims that it would be more efficient to use logical REDO 
processing rather than physical REDO processing as proposed in the ARIES paper, since logical records are 
more compact and will require fewer disk I/Os than physical log records. Dana Bass explains to Ben that he 
is wrong on two accounts: first, ARIES will not work with logical REDO logging, and second, there are some 
situations in which physical logging might be more efficient than logical logging. 

8. [6 points]: Describe, in one or two sentences, why ARIES requires physical REDO. 
(Write your answer in the space below.) 

ARIES requires physical REDO because the system may be in an inconsistent state after a crash. Be
cause pages can be arbitrarily corrupted, logical REDO may not be able to restore the state of a page 
to a correct state, whereas physical log records that capture they exact bytes in a page would be able 
to do this. Physical REDO also guarantees idempotency, which may be important during repeated 
invocations of recovery. 

9. [3 points]: Describe, in one or two sentences, a situation in which physical logging would outper
form logical logging. 

(Write your answer in the space below.) 

Because logical logging requires an operation to be applied, doing this may be more expensive copying 
the new bytes into place. Logical logging may also require updates to be done in several places (e.g., 
rebalance a BTree, etc.); physical logging would log each of these physical updates separately and 
would not have to do any computation to determine how to apply the changes. 

Name:




6.830 Fall 2005, Quiz 1 Solutions Page 7 of 12


II Sir VotesaLot 

Fed up with her perception of disenfranchisement of voters during the recent elections, Dana Bass is building 
a new Linuxbased voting machine called “Sir VotesaLot” that is designed to be more secure and accurate 
than previous voting machines. She plans on using an open source database to store the data about votes, 
polling places, candidates, and other election data. Your job is to help her with performance issues of her 
database system. Because we have not studied distributed databases yet, you should simply assume that votes 
from different polling places are transmitted over the Internet to a single Sir VotesaLot database that collects 
all of the voting information. 

Dana decides that the database used in Sir Votesalot will consist of six tables: a voter table that has 
information about each voter (including a reference to the place where he or she votes), a place table that 
has information about each polling place, a contest table that has information about each position that 
is up for grabs in the election, a candidates table that contains information about each candidate, an 
eligibility table that lists the locations (as listed in the place table) that can vote in each contest, and 
a votes table that records the votes of each voter in each contest. 

She chooses to use the following schemas (only the relevant fields are shown here): 

voters 
{ id : int primary key, 

name : string 
sex : char, 
age : int, 
place: foreign key references places.place_id 

} 

This table keeps track of the voters in the system. Place is a reference to the location in which the voter votes. 

places 
{ place_id : int primary key, 

district : string 
city : string 
state : string 

} 

This tables lists places where voting happens, as defined by a particular district inside of a city. For simplicity, 
each contest is associated with one or more places via the eligibility table, and each voter is associated 
with exactly one place. 

contest 
{ contest_id : int primary key 

title : string 

} 

This table contains information about the different positions being contested during this election, where title 
is the position being elected (e.g., President). 

Name: 



6.830 Fall 2005, Quiz 1 Solutions	 Page 8 of 12


candidates 
{	 candidate_id : int primary key


contest : int foreign key references contest.contest_id

name : string

age : int

party : string


} 

This table contains information about candidates and the positions they are running for. 

eligibility 
{ place : int foreign key references places.place_id 

contest : int foreign key references contest.contest_id 
} primary key place, contest 

This table lists the places eligible to vote in each contest. 

votes 
{	 voter : int foreign key references voters.id


contest : int foreign key references contest.contest_id

candidate : int foreign key references candidates.candidate_id


} primary key voter, contest, candidate 

This table lists the candidate that each voter voted for in each contest. 

Query Optimization 

Because she is particularly interested in younger candidates, Dana wants to compute the count of votes ob
tained by candidates under the age of 30 who are being voted on by voters in Massachusetts. She writes the 
following query: 

SELECT candidate.name, contest.title, COUNT(*)

FROM candidate, contest, votes

WHERE votes.contest = contest.contest id

AND votes.candidate = candidate.candidate id

AND candidate.age < 30

AND contest.contest id IN


(SELECT DISTINCT contest id //contests in MA

FROM eligibility, places

WHERE eligibility.place = places.place id

AND places.state = ‘‘MA’’

)


GROUP BY candidate.name, contest.title 

Dana asks you to help estimate the cost and improve the performance of this query. At first, she has no indices. 
Assume there are 5,000 candidates, 100,000 voters, 1,000 contests, 1,000 places, that each contest is eligible 
to be voted on at 10 places, and that each voter votes in all contests he or she is eligible for. 

Name:




6.830 Fall 2005, Quiz 1 Solutions	 Page 9 of 12


10. [6 points]: Suppose that each of the 50 US states has the same number of voters, and that the age 
of voters is evenly distributed between 18 and 118. Further suppose that there is no correlation between 
candidate age and the number of votes he or she receives. Estimate the selectivity of the following 
predicates, where selectivity is between 0 and 1, and the selectivity of a join is the fraction of the cross 
product of the two input relations that is output: 

(Estimate the selectivity for each of these expressions:) 

1A. The selection (IN expression) on contest.contest id: 50 
12B. The selection on candidate.age: 100 

1,000,000 C.	 The join on votes.contest and contest.contest id: (1,000,000)(1,000)


1,000,000
D.	 The join on votes.candidate and candidate.candidate id: (1,000,000)(5,000)


10,000
E. The join on eligibility.place and places.place id: (1,000)(10,000) 

11. [10 points]: In the space below, sketch a query plan for this query that would result in the minimum 
amount of work given no indices and the selectivity estimates you gave above. Be sure to indicate what 
join algorithm you would use for each join as well as which relation is the inner/outer in any nested 
loops joins. Assume you have sufficient memory to fit all relations and any intermediate data structures 
in memory. 

(Show your plan in the space below.) 

voteshash join
contest_id IN inner

places
eligibility

select
state = 'MA'

hash join
place=place_id

hash join
candidate = candidate_id

select
age<30

candidates

hash aggregate

10^6
1,000/50

1,000

10,000
1,000/50

10,000/50

5,000

5,000 * 12/10010^6 / 50

hash join
contest = contest_id

contest

1,000

10^6 * 12 / 5000

At the bottom of the plan, we compute the subquery and join its results with the contest table (to defer 
joining with the large votes table as much as possible.) We choose to order the remaining joins such that 
as much of the votes table is filtered out as early as possible. Hence, because the join with contest id’s 
in MA is most restrictive, we apply it first. The second most selective join is with candidate, so we apply 
it next. All selections are pushed down as far as possible. 

Name:




6.830 Fall 2005, Quiz 1 Solutions	 Page 10 of 12


12. [5 points]: Dana knows she should add some indices to her database. Recommend a set of indices 
that will improve the performance of this query the most, assuming the database supports clustered and 
unclustered Hash and B+tree indices and that at most one clustered index can be created per relation. 
Justify your choice. 

(Show you answer in the space below.) 

Assuming all relations and indices can fit into memory, she should create: 

–	 A clustered hash index on places.state to speed up the selection on places. 

–	 A clustered hash index on eligibility.place id to use as the inner relation of an indexnested loops 
join with places, to avoid having to read all of eligibility (since only 1/50 needs to be read.) 

–	 A clustered hash index on votes.contest id, to use as the inner relation of an indexnested loops 
join with, to avoid having to read all of votes. 

–	 A clustered Btree index on candidates.age, to speed up the selection on age. 

–	 (Possibly) a clustered hash index on contest.contest id to be used as the inner relation of an 
indexnested loops join on with the inner query. This will avoid reading information about all of 
the contests when only a small fraction of them are actually accessed. 

Note that using indexnested loops joins will result in random I/O (instead of sequential I/O as in hash 
join), but that the reduction in the number of records that has to be read for most of these joins will 
make this tradeoff worthwhile. 

Concurrency Control 

After Dana has deployed Sir Votesalot, she notices that the performance of her system is poor. She does 
some profiling of the system system and discovers that the bottleneck is in the locking system. The database 
system workload consists mainly of two types of transactions (here, W, X, Y and Z refer to constants that 
are written as a part of the query by the issuing program): 

T1: 
BEGIN TRANSACTION 
voter id = SELECT voters.id FROM voters WHERE voters.name = X 
INSERT INTO votes VALUES (voter id, W1, Z1) 
... 
INSERT INTO votes VALUES (voter id, Wn, Zn) 
COMMIT 

T2: 
BEGIN TRANSACTION 
total = SELECT count(*) FROM votes WHERE contest = X 
SELECT candidate, count(*)/total FROM votes 

WHERE contest = X GROUP BY candidate 
COMMIT 

Name: 



6.830 Fall 2005, Quiz 1 Solutions	 Page 11 of 12


At any given time, there are about 100 times as many T1 transactions running as T2 transactions. Suppose that 
each T1 transaction runs 10 inserts on average and that those inserts are evenly distributed over candidates, 
contests, and voters. Assume that the contests referenced by the set of T2 transactions are evenly distributed 
over all contests. Finally, assume that (for the purposes of these queries), Dana has created a clustered hash 
index on voters.name and on votes.contest (so that the WHERE clause in the SELECT statements can be 
satisfied without doing a table scan.) 

13. [16 points]: Dana wants to understand how different degrees of locking and degrees of consistency 
will affect the performance of her database. Suppose a page in the database holds 100 records. Using 
the table cardinalities given above (5,000 candidates, 100,000 voters, 1,000 contests, 1,000 places, that 
each contest is eligible to be voted on at 10 places, and that each voter votes in all contests he or she is 
eligible for), estimate the number locking requests per transaction of type T1 and T2 for the different 
degrees of consistency and granularity of locks listed below. If a transaction rerequests a lock it already 
holds, that still counts as a locking request. 

(Write your answer in the space below.) 

A.	 Degree 3 consistency, recordlevel locking: 
No. of lock manager requests per T1: 1(S), 11(X) 
No. of lock manager requests per T2: 1,000,000 votes, 1,000 contents implies 1,000 locks/contest 

B.	 Degree 3 consistency, pagelevel locking: 
No. of lock manager requests per T1: 1(S), 1(X), assuming all inserted records are on same 
page 
No. of lock manager requests per T2: Because votes is clustered on contest, assume that all 
1,000 records are colocated. Hence, only 10 locks are needed. 

C.	 Degree 1 consistency, recordlevel locking:

No. of lock manager requests per T1: 10(X)

No. of lock manager requests per T2: 0


D.	 Degree 1 consistency, pagelevel locking:

No. of lock manager requests per T1: 1(X)

No. of lock manager requests per T2: 0


Name:




6.830 Fall 2005, Quiz 1 Solutions	 Page 12 of 12


14. [9 points]: Dana concludes that switching her database to degree 1 consistency with record level 
locking will help reduce lock contention (e.g., the number of times a transaction has to wait to acquire 
a lock), which she believes is the major performance bottleneck with Sir VotesaLot. With the mix of 
T1 and T2 transactions given above , will degree 1 consistency have significantly less lock contention 
than degree 3 consistency with record level locks? Why or why not? Provide an analytical justification 
for your answer. 

(Write your answer in the space below.) 

Degree 1 consistency will have significantly less lock contention. If at any given time there are 100 
T1 transactions and 1 T2 transaction running, the T1 transactions will have 1100 locks, and the T2 
transactions will have 1000 locks when running at level 3 consistency. At level 1 consistency, only 1000 
locks will be needed by the T1 transactions (T2 transactions need no locks). Hence, there is a significant 
reduction in lock pressure. 

15. [3 points]: What are the other implications of using degree 1 consistency? 
(Write your answer in the space below.) 

–	 T2 transactions may see a different value for total than the sum of all the votes in contest X, 
since it reads dirty data. 

–	 If T1 transactions abort with any frequency, T2 transactions may see larger errors as they read 
uncommitted data. 

End of Quiz I 

Name: 


